NOTE

SYNTHESES OF $|6^2H|$ -INDOLE, $|6^2H|$ -GRAMINE AND $|6^3H|$ -GRAMINE

A. A. Ghini, G. Burton and E. G. Gros

Departamento de Química Orgánica y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428 Buenos Aires, Argentina

SUMMARY

The title compounds were obtained from the corresponding 6-bromo derivatives by conversion to the 1,6-dilithio-compounds followed by treatment with deuteriated or tritiated water and exchange of the 1-deuterium or tritium with water.

Key Words: $|6^{-2}H|$ -Indole, $|6^{-2}H|$ -Gramine, $|6^{-3}H|$ -Gramine, Synthesis

As part of our studies on the biodegradation of gramine in *Hordeum vulgare* plants (1) we required this alkaloid labelled with tritium at position 6. Lautié has reported the preparation of several specifically deuterated indoles (2) but not at the 6-position. We now describe an efficient method for the preparation of gramine and indole specifically deuterated or tritiated at C-6. The labelled indole can be easily converted into other simple indole derivatives involved in the catabolism of gramine (3).

6-Bromoindole ($\underline{\underline{1}}\underline{\underline{a}}$) was obtained from p-toluidine (4) and was converted to 6-bromogramine ($\underline{\underline{1}}\underline{\underline{b}}$) by treatment with formaldehyde-dimethylamine. Sequential treatment of either $\underline{\underline{1}}\underline{\underline{a}}$ or $\underline{\underline{1}}\underline{\underline{b}}$ with one equivalent of n-butyllithium and two equivalents of t-butyllithium in diethyl ether-THF (3:1) afforded the corresponding 1,6-dilithio-derivative ($\underline{2}\underline{\underline{a}}$, $\underline{2}\underline{\underline{b}}$). Quenching of the reaction with deuterium oxide (2 equivalents) followed by dilution with water and extractive work-up rendered the 6-deuterio-compounds ($\underline{3}\underline{\underline{a}}$, $\underline{3}\underline{\underline{b}}$; X= 2 H), the deuterium at position 1 being exchanged during the water treatment. When tritiated water was used on $\underline{\underline{2}}\underline{\underline{b}}$, $|6-^3H|$ -gramine ($\underline{3}\underline{\underline{b}}$, X= 3 H) was obtained. The specificity of the deuterium labelling was ascertained by 1 H- and 2 H-NMR spectroscopy and the degree of labelling was shown to be \underline{ca} . 100% monodeuteration based on analysis of the mass spectra. This highly efficient preparation should be specially adequate for the synthesis of tritium labelled indoles with high specific activity.

EXPERIMENTAL

Melting points are uncorrected. ¹H- and ²H-NMR spectra were measured at 100.1 and 15.36 MHz respectively in a modified Varian XL-100-15 FT-NMR spectrometer. Mass spectra were determined at 70 eV (direct inlet) with a Varian-MAT CH7-A mass spectrometer. Deuterium oxide was purchase from Merck, Sharp and Dohme and tritiated water was provided by the Comisión Nacional de Energía Atómica of

Argentina.

6-Bromogramine ($\underline{1}\underline{b}$). 6-Bromoindole ($\underline{1}\underline{a}$, 50 mg) was dissolved in glacial acetic acid (0.1 ml) and treated with 36% formaldehyde (0.02 ml) and dimethylamine 28% (0.04 ml). The reaction mixture was heated at 105°C for 10 min, left 1 hr at room temp and poured into water. The suspension was made basic with 2N NaOH solution and extracted with CH₂Cl₂-MeOH (4:1). Evaporation of the solvent rendered $\underline{1}\underline{b}$ (61 mg) of m.p. 130-131°C. H-NMR (CDCl₃-TMS): δ 2.30 (6H, s, N-Me₂), 3.63 (2H, s, CH₂-N), 7.04 (1H, b.s., H-2), 7.21 (1H, dd, J=8 and 2 Hz, H-5), 7.45 (1H, d, J=2 Hz, H-7), 7.55 (1H, d, J=8 Hz, H-4), 8.82 (1H, b.s., N-H). MS (m/z, %): 252-254 (M⁺, 65), 208-210 (M - N-Me₂, 100), 129 (208 - Br, 66).

|6- 2 H|-Indole ($\underline{3}\underline{a}$). 6-Bromoindole ($\underline{1}\underline{a}$, 24.3 mg) was dissolved in Et₂O (3 ml) and THF (1 ml) in a nitrogen atmosphere and cooled to -78°C. *n*-Butyllithium 1.55 M in hexane (0.09 ml) was added and the reaction mixture was warmed to 0°C and kept at that temperature for 30 min with stirring. The stirred solution was again cooled to -78°C and £-butyllithium 2.6 M in pentane (0.11 ml) was rapidly added and the yellow-green solution was warmed to -30°C and stirred at that temperature for 1 hr. 2 H₂O (0.006 ml) was added and the resulting colourless solution was poured into water and extracted with CH₂Cl₂. Evaporation of the solvent followed by separation of unreacted 6-bromoindole by RP-HPLC on an Altex Ultrasphere ODS 5 µm column (250 x 10 mm) using MeOH-water 9:1 as eluent, afforded $|6-^2$ H|-indole (12 mg). |1H-NMR (CDCl₃-TMS): 6 6.55 (1H, b.s., H-3), 7.16 (2H, m, H-2 and H-5), 7.38 (1H, s, H-7), 7.65 (1H, d, J=8 Hz, H-4), 8.08 (1H, b.s., N-H). MS (m/z, %): 118 (M⁺, 100), 91 (M - HCN, 27), 90 (M - HCNH, 18). $|6-^2$ H|-Gramine ($\underline{3}\underline{b}$). 6-Bromogramine ($\underline{1}\underline{b}$, 48 mg) was suspended in Et₂O (3 ml)

and THF (1 ml) in a nitrogen atmosphere and cooled to -78° C. n-Butyllithium 1.55 M in hexane (0.15 ml) was added and the reaction mixture was warmed to 0°C. The resulting purple red solution was again cooled to -78° C and treated with t-butyl lithium 2.6 M in pentane (0.18 ml); after stirring for 1 hr at -30° C, 2 H₂O (0.01 ml) was added followed by extractive work-up as above, yielding 6^{-2} H-gramine (30 mg). 1 H-NMR (CDCl₃-TMS): δ 2.30 (6H, s, NMe₂), 3.65 (2H, s, CH₂-N), 7.04 (1H, b.s., H-2), 7.11 (1H, d, J=8 Hz, H-5), 7.30 (1H, s, H-7), 7.69 (1H, d, J=8 Hz, H-4), 8.80 (1H, b.s., NH). 2 H-NMR (CH₂Cl₂): 7.15 ppm (6^{-2} H). MS (m/z, %): 175 (M⁺, 28), 131 (M - NMe₂, 100).

 $|6^{-3}H|$ -Gramine $(\underline{3b}, X=^{3}H)$. 6-Bromogramine $(\underline{1b}, 48 \text{ mg})$ was made to react as above, and the reaction was quenched by addition of $^{3}H_{2}O$ (30 mCi/m1, 0.008 m1) affording 6- ^{3}H -gramine (29 mg, 0.42 mCi/mmol) with spectroscopic properties identical to those from an authentic sample.

Acknowledgements

We thank CONICET and The Organization of the American States for partial financial support. We also thank Dr. A. Vitale for helpful discussions

REFERENCES

- 1. Ghini, A.A., Burton, G. and Gros, E.G.- Phytochemistry 21: 605 (1982)
- 2. Lautié, M.F.- J. Lab. Compds. Radiopharm. 16: 735 (1978)
- 3. Schallenberg, J. and Meyer, E.- Z. Naturforsch. 38b: 108 (1983)
- Dellar, G., Djura, P. and Sargent, M.V.- J. Chem. Soc. Perkin Trans I 1679 (1981)